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Air temperature (Ta) is an important climatological variable for forest research and
management. Due to the low density and uneven distribution of weather stations,
traditional ground-based observations cannot accurately capture the spatial distribution
of Ta, especially in mountainous areas with complex terrain and high local variability.
In this paper, the daily maximumTa in British Columbia, Canada was estimated
by satellite remote sensing. Aqua MODIS (Moderate Resolution Imaging
Spectroradiometer) data and meteorological data for the summer period (June to
August) from 2003 to 2012 were collected to estimateTa. Nine environmental vari-
ables (land surface temperature (LST), normalized difference vegetation index (NDVI),
modified normalized difference water index (MNDWI), latitude, longitude, distance to
ocean, altitude, albedo, and solar radiation) were selected as predictors. Analysis of the
relationship between observedTa and spatially averaged remotely sensed LST indi-
cated that 7! 7 pixel size was the optimal window size for statistical models
estimatingTa from MODIS data. Two statistical methods (linear regression and random
forest) were used to estimate maximumTa, and their performances were validated with
station-by-station cross-validation. Results indicated that the random forest model
achieved better accuracy (mean absolute error, MAE = 2.02¡C,R2 = 0.74) than the
linear regression model (MAE = 2.41¡C,R2 = 0.64). Based on the random forest
model at 7! 7 pixel size, daily maximumTa at a resolution of 1 km in British
Columbia in the summer of 2003Ð2012 was derived, and the spatial distribution of
summerTa in this area was discussed. The satisfactory results suggest that this
modelling approach is appropriate for estimating air temperature in mountainous
regions with complex terrain.

1. Introduction

Near-surface air temperature, also referred to as air temperature, is usually measured at
meteorological shelter height (about 2 m above ground). Air temperature is an important
meteorological variable that influences forest ecosystems. It plays a critical role in
vegetation distributions, phenology, and growth (Benavides et al.2007; Stahl et al.
2006). The maximum daytime temperature also a shows significant relationship with
the occurrence of wildfire on hot and sunny days (Aldersley, Murray, and Cornell2011;
Litschert, Brown, and Theobald2012). Therefore, detailed knowledge of the spatial
variability of air temperature is of interest for forest research and management.
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Traditionally, Ta is measured by weather stations, which provide observed data at
discrete locations. However, weather stations are usually sparsely distributed in mountai-
nous regions, especially in high-elevation areas, and thus may not optimally represent all
environments (Rolland2003). Given the large spatial heterogeneity ofTa in complex
terrain (Holden et al.2011), it is difficult to accurately characterize the distribution ofTa

over mountainous areas (Carrega1995). Different interpolation methods have been used
to generate spatially continuousTa from point station measurements (Benavides et al.
2007; Dodson and Marks1997; Duhan et al.2013; Kurtzman and Kadmon1999; Stahl
et al.2006). However, the performance of interpolation methods is highly dependent on
the spatial density and distribution of weather stations (Chan and Paelinckx2008; Vogt,
Viau, and Paquet1997), which is not considered satisfactory in mountainous areas.

Satellite remote sensing provides the ability to extract spatially continuous information
on near-surface environmental conditions, which can provide more spatial detail than
ground-based measurements (Czajkowski et al.1997; Kim and Han2013). Over the past
20 years, various methods have been proposed to deriveTa using remote-sensing data.
Most of the methods estimateTa based on remotely sensed land surface temperature
(LST), which greatly influencesTa, particularly on clear-sky days (Benali et al.2012).
Generally, these methods can be divided into three groups: the temperatureÐvegetation
index (TVX) approach (Czajkowski et al.1997; Goward et al.1994; Nieto et al.2011;
Prihodko and Goward1997; Wloczyk et al.2011; Zhu, L! , and Jia2013), statistical
approaches (Benali et al.2012; Florio et al.2004; Jang, Viau, and Anctil2004; Kim and
Han 2013; Xu, Qin, and Shen2012; Zhang et al.2011), and surface energy balance
approaches (Pape and Lšffler2004; Sun et al.2005). The TVX method is based on the
hypothesis thatTa within an infinitely thick canopy is equal to the canopy surface
temperature (Prihodko and Goward1997). In this method, a parameter, maximum normal-
ized difference vegetation index (NDVImax), is adopted to represent a fully vegetated
canopy. According to the negative relationship between surface temperature and NDVI in
a relatively small window assuming uniform atmospheric conditions, the LST value at
NDVImax can be calculated and set equal toTa. Statistical approaches usually estimate
Ta by combining LST and other variables, such as NDVI, elevation, latitude, and long-
itude. Regression is the most frequently used statistical method to estimateTa, ranging
from multiple linear regression to more complex models such as artificial neural networks.
Surface energy balance approaches are based on the physical principle that the sum of the
sensible heat flux, latent heat flux, and soil heat flux is equal to the net radiation. The
latent heat flux and sensible heat flux can be expressed as functions of the difference
betweenTa and LST. Therefore the difference betweenTa and LST can be calculated
according to the surface energy balance equation, which is a complex function of solar
radiation, wind speed, soil moisture, surface roughness, surface albedo, and other
variables. Based on the quantitative relationship betweenTa and the remotely sensed
LST, Ta can be derived.

The objective of this study was to estimate the maximum daily air temperature with
high spatial resolution in British Columbia, Canada from Moderate Resolution Imaging
Spectroradiometer (MODIS) data by a proper statistical method. Specifically, the spatial
scale effects of the relationship betweenTa and LST were first analysed to determine the
best window size to retrieveTa in the study area. Then linear regression and random forest
models were developed to estimateTa, and their accuracy was evaluated by comparison
with observed air temperature data from weather stations.
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2. Study area and data set

2.1. Study area

The province of British Columbia is situated in western Canada, from 48.31° N to
60.00° N and 114.07° W to 139.04° W, and has a total land area of 944,735 km2. This
region is characterized by mountainous terrain, except for the northeastern plains. Forest is
the major land-cover type, covering almost 60% of the province (B.C. Ministry of Forests,
Mines and Lands 2010). Most of the forest (83%) is dominated by conifers.

Influenced by the Pacific Ocean, mountainous topography, and the ~12° latitude
range, British Columbia has a number of different climatic zones. Generally, coastal
British Columbia has a mild, rainy oceanic climate, and the interior has a semi-arid
climate. During the summer, the influence of the North Pacific high-pressure system
brings hot and dry weather to most regions in British Columbia, increasing the risk of
wildfire (Pike et al. 2010). According to the historical fire data of 1950–2012 provided by
DataBC Geographic Services, approximately 70% of the wildfire in British Columbia
occurs in the summer period.

2.2. Data set

The satellite data used in this study are Aqua/MODIS data covering the summer period
(June to August) from 2003 to 2012. During the daytime, Aqua satellite overpass occurs
at about 13:00 pm local time. Three MODIS land products (collection V005), the daily 1
km land surface temperature product (MYD11A1), daily 500 m land surface reflectance
product (MYD09GA), and 16-day 1 km albedo product (MCD43B3), were collected from
USGS Land Processes Distributed Active Archive Center (LP DAAC). MYD11A1
provides daytime and night-time LST, which is derived from two thermal infrared
bands using a generalized split-window algorithm (Wan 1999). MYD09GA provides
land surface reflectance from seven spectral bands (red, NIR1, blue, green, NIR2,
SWIR1, SWIR2), which are atmospherically corrected using MODIS atmospheric pro-
ducts (Vermote and Vermeulen 1999). MCD43B3 provides land surface albedo, which is
calculated based on a semi-empirical, kernel-driven bidirectional reflectance distribution
function (BRDF) model (Strahler and Muller 1999). In addition, the 90 m Shuttle Radar
Topography Mission (SRTM) digital elevation model (DEM) data of the study area were
acquired from the US Geological Survey (USGS).

Air temperature data were collected from 288 weather stations in British Columbia
operated by Environment Canada (Figure 1). Daily maximum temperatures at these
stations from June to August 2003–2012 were used in this study. The quality control
(QC) information in the MODIS LST product provides the quality level of each pixel,
including cloud mask flag. Based on the cloud mask derived from the QC of the MODIS
LST product, Ta measurements under cloudy conditions were removed, leaving 62,746
samples for model development and validation.

3. Methodology

3.1. Variable selection

Near-surface air temperature is driven more by land surface temperature than by direct
solar radiation (Zakšek and Schroedter-Homscheidt 2009), making LST an important
variable for estimating Ta. Other parameters, such as vegetation cover, soil moisture,
solar radiation, and albedo also have some influence on air temperature. In previous
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studies, several variables were employed to estimate air temperature. For example, the
variables used by Benali et al. (2012) included LST, Julian Day, elevation, and distance to
coast. The variables used by Kim and Han (2013) included LST, NDVI, altitude, and solar
zenith angle. The variables used by Crist—bal, Ninyerola, and Pons (2008) included LST,
NDVI, and albedo. The variables used by Zak!ek and Schroedter-Homscheidt (2009)
included LST, NDVI, solar zenith, albedo, solar radiation, and altitude. After comprehen-
sive consideration of these variables, nine variables were selected as the predictors for
modelling air temperature: daytime LST, NDVI, modified normalized difference water
index (MNDWI), latitude, longitude, distance to ocean, altitude, albedo, and solar
radiation.

Daytime LST was extracted from the MYD11A1 product. Land surface reflectance of
green, red, NIR1, and SWIR bands was extracted from the MYD09GA product to
calculate NDVI and MNDWI, which were then resampled to 1 km resolution. Surface
shortwave (0.3Ð5.0 µm) broadband albedo was extracted from the MCD43B3 product.
Distance to the ocean was calculated based on the western coastline of North America.
Altitude data were acquired from the SRTM DEM data and resampled to 1 km resolution
to be consistent with MODIS data. Daily solar radiation was calculated based on the
Julian Day, latitude, slope, and aspect derived from altitude data.

NDVI is calculated using the following equation (Tucker1979):

NDVI !
! NIR " ! red

! NIR # ! red
; (1)

138¡ W 126¡ W 117¡ W 114¡ W 111¡ W120¡ W123¡ W129¡ W132¡ W135¡ W

126¡ W129¡ W 117¡ W120¡ W123¡ W132¡ W135¡ W

48¡ N

51¡ N

54¡ N

57¡ N

Elevation

Weather stations

km
3001500

4118 m

0 m

48¡ N

51¡ N

54¡ N

57¡ N

Figure 1. Elevation map of the study area and the distribution of weather stations.
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where! NIR and! red are the reflectance of NIR and red bands, respectively.
MNDWI is calculated using the following equation (Xu2006):

MNDWI !
! green" ! SWIR

! green# ! SWIR
; (2)

where! greenand! SWIR are the reflectance of green and SWIR bands, respectively.

3.2. Model selection

Using the nine variables as predictors, two different methods were employed to estimate
daily maximumTa in British Columbia: linear regression and random forest. Linear
regression is the most popular statistical model for estimating air temperature and requires
assumptions of normality of residuals, constant variance, and true linearity of the mod-
elled relationship (Helsel and Hirsch1992). Random forest is a nonparametric statistical
method proposed by Breiman (2001). Unlike traditional statistical methods that assume a
parametric model for prediction, random forest is an ensemble learning technique based
on a collection of tree predictors. It consists of a combination of many decision trees,
where each tree is built using a deterministic algorithm by a bootstrap sample, leaving
the remaining data points for validation. A decision tree is generated from a random
subset of the training data and the nodes are split using the best split predictor among a
subset of randomly selected variables. Predictions produced by the random forest model
are the average of the results of all the individual trees that make up theÔforestÕ.
Compared with statistical analysis methods, random forest has the advantages of making
no distributional assumptions about the predictors, measuring variable importance, and
being less sensitive to noise or overfitting (Armitage and Ober2010; Breiman2001;
Ismail and Mutanga2010). In recent years, random forest has increasingly been applied
in remote-sensing studies, most of which were focused on land cover classification
(Chan and Paelinckx2008; Ghimire, Rogan, and Miller2010; Guo et al.2011; Pal
2005; Timm and Mcgarigal2012).

Linear regression was performed in the R statistical software. A stepwise multiple
linear regression analysis was conducted to identify the best set of variables, with the
Akaike Information Criterion (AIC) as selection criterion. Results reveal that the linear
regression equation including all nine variables achieves the lowest AIC value. Therefore,
all nine variables were employed to generate linear regression equation. The random
forest model was also implemented in the R statistical software, using theÔrandomForestÕ
package (Liaw and Wiener2002). All nine variables were also included in the random
forest model. To run the random forest model, two important parameters should be
defined: the number of trees to grow (ntree) and the number of variables to use at each
node (mtry). These two parameters were optimized based on the percentage variance
explained by the model. The mtry value was tested from 1 to 9 with a single interval, and
the ntree value was tested using the following six values: 50, 100, 200, 500, 1000, and
2000.Figure 2shows the variations in percentage variance explained with different ntree
and mtry values. The highest values are achieved at mtry = 3 and high ntree values
(ntree = 1000 or 2000). Considering that higher ntree values require higher computational
cost, the ntree value was set to 1000 and the mtry value to 3 to run the random forest
model.
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The relationship between observedTa and remotely sensed LST is not limited to a
single pixel, because the temperature of the near-surface air mass in a given area is
influenced by energy exchanges with the land surface over a larger upwind area. This is
especially important in complex terrain where LST can vary over short distances due to
insolation and altitude changes. Previous studies confirm this by showing that higher
correlation coefficients were found betweenTa and spatially averaged LST than those
betweenTa and single-pixel LST (Kawashima et al.2000; Nichol and Wong2008; Xu,
Qin, and Shen2012). To determine the proper spatial window size for estimating air
temperature, the mean LST of 1! 1, 3 ! 3, 5 ! 5, 7 ! 7, 9 ! 9, 11 ! 11, 13! 13, and
15 ! 15 km windows around weather stations was calculated.Figure 3 shows the
variations in correlation coefficient betweenTa and LST with the window size used for

1 2 3 4 5 6 7 8 9
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Figure 2. Variation in percentage variance explained by the random forest model with different
ntree and mtry values.
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Figure 3. Variation of the correlation coefficient betweenTa and LST with the window size used to
spatially average the LST data.
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averaging LST. It can be seen that the correlation coefficient initially increases rapidly
with increasing window size and reaches its maximum value at the 7 km! 7 km window
size, after which it decreases slowly with increasing window size. Based on this result, the
7 km ! 7 km window size was selected for spatial averaging of all satellite-derived data
layers prior to model development.

3.3. Model validation

The performance of the two models was assessed using cross-validation with the 62,746
samples from 288 weather stations. All samples from each station were used in turn as the
validation data set to test the model, while the remaining samples were used as the
training data set to fit the model. This process was repeated until all stationsÕsamples
had been used once as validation data. Mean absolute error (MAE) and coefficient of
determination (R2) were calculated from the measured and estimatedTa values to assess
model performance.

The importance of predictors in each model, defined as the impact on the model
accuracy when the variable was removed (Briand, Freimut, and Vollei2004; Jeong et al.
2010), was also assessed. At a time, one of these nine variables was removed and the
remaining eight variables used to run the model. The increase of estimation error caused by
the removal of the variable, measured by the percentage increase in MAE (%IncMAE), was
used to assess the importance of the variable removed. Variables with larger %IncMAE
values were considered more important for estimatingTa.

4. Results and discussion

4.1. Model performance

Spatially averaged values of LST, NDVI, MNDWI, latitude, longitude, distance to ocean,
altitude, albedo, and solar radiation were calculated and used as predictors ofTa in linear
regression and random forest models. Equation (3) gives the linear regression equation for
estimatingTa. Note that the structure of the random forest model, which is nonparametric,
cannot be similarly provided.

Ta max ! 0:6776 LST" 8:62 NDVI # 0:2976 MNDWI" 0:1146 Lat

" 0:1446 Lon" 0:0029 Dis# 0:0012H # 35:5791 Al

# 0:0676Ws " 29:3955;

(3)

whereTa_max is the daily maximumTa (¡C), LST is the land surface temperature (¡C), Lat
is the latitude, Lon is the longitude, Dis is the distance to the ocean (km),H is the altitude
angle (m), Al is the surface albedo, andWs is the solar radiation (M J m! 2).

Figure 4shows the scatter plots between measured and estimatedTa from the linear
regression model (left) and the random forest model (right). The linear regression model
produces an MAE of 2.41¡C andR2 of 0.64, and the random forest model produces a
higher accuracy with an MAE of 2.02¡C andR2 of 0.74. In addition, the scatter of the
random forest model is considerably closer to the 1:1 line than that of the linear regression
model. The comparison between the results obtained with the random forest model and
the linear regression model shows that random forest has much higher estimation
accuracy. This may be attributed partly to the complex terrain of the study area.
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Differences in topography, land surface properties, and solar radiation lead to different
land surfaceÐatmosphere interactions. As a single global model, linear regression cannot
properly handle the complicated relationships betweenTa and environmental variables at
different conditions. Additionally, the relationship betweenTa and some variables in
heterogeneous landscapes cannot be assumed to be linear, in which case the linear
regression model will perform poorly. By contrast, random forest is able to effectively
model non-linear and complex relationships by constructing a multitude of decision trees,
and therefore works well in mountainous areas.

The distribution of residuals, the difference between measuredTa and estimatedTa

from the random forest model at 7! 7 pixel size, was also examined (Figure 5). The mean
value of residuals is 0.09¡C, suggesting that the model is very slightly overestimatingTa.
About 33.04% of the estimatedTa falls within ±1¡C of the observedTa, 77.25% falls
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Figure 4. Scatter plot between measured and estimated daily maximumTa from the linear regres-
sion model (a) and random forest model (b).
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Figure 5. Histogram of residuals of the random forest model.
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within ±3¡C, and 93.89% falls within ±5¡C. The estimatedTa shows good overall
agreement with the measuredTa. Taking into account the complex terrain and large area
of the study area, these results are satisfactory.

Table 1shows the importance of variables in terms of the percentage increase in MAE,
which represents the influence on the random forest model when each variable is
removed. Higher %IncMAE indicates greater variable importance. LST has the highest
importance (%IncMAE = 106.43%), with MAE more than doubling when it is removed
from model training. This indicates that LST is the most important variable in the model,
which can be attributed to the fact that near-surface atmosphere is directly heated by the
land surface. Solar radiation shows the second highest importance (%IncMAE = 29.29%),
which is also a considerable source of heat for the atmosphere. MNDWI, NDVI, and albedo,
which effectively represent the land surface characteristics such as soil moisture, vegetation
cover, and reflection ability, also show relative high importance (%IncMAE = 26.93%,
25.80%, and 21.64%, respectively). However, other environmental variables (latitude, long-
itude, altitude, and distance to sea) have low importance (%IncMAE = 7.94%, 7.67%, 7.90%,
and 7.53%, respectively). The lower importance of these four temporally stable geographical
variables may be attributed to the fact that remotely sensed variables can effectively describe
both spatial and temporal variations in environmental properties, while geographical variables
can only describe spatial variation.

4.2. Spatial variation ofTa

Figure 6shows the average daily maximumTa map of British Columbia in the summer
periods from 2003 to 2012, as predicted by the random forest model. The area exhibits
substantial spatial variation in air temperature, which is most strongly influenced by
altitude, latitude, terrain, and distance to the ocean. Generally, the interior is hotter than
the coastal areas, and the south is hotter than the north. The summer maximumTa in most
regions was found within the range 15Ð25¡C, although the valleys located in the southern
interior show higher temperatures (>27¡C) and the high-altitude areas of the Coast
Mountains show lower temperatures (<12¡C). The Queen Charlotte Islands, Rocky
Mountains, and the northern plateau also show relatively low temperatures.

Ten-year (2003Ð2012) averaged daily maximumTa maps of each summer month are
presented inFigure 7. Overall, the spatial distribution ofTa is similar among the three
months although temperatures were lower in June than in July and August, which were
very similar except in the northeastern plains and northern plateau where July is sub-
stantially hotter than August.

Table 1. Importance of variables in random forest model.

Variable %IncMAE (%)

LST 106.43
NDVI 25.80
MNDWI 26.93
Altitude 7.90
Distance to sea 7.53
Latitude 7.94
Longitude 7.67
Albedo 21.64
Solar radiation 29.29
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5. Conclusions

In this paper, the daily maximum air temperature in summer periods from 2003 to 2012 was
estimated for British Columbia, Canada using 1 km Aqua/MODIS data. The correlation
coefficient between observedTa and remotely sensed LST shows an increasing trend, with
spatial window size increasing from 1 km! 1 km to 7 km! 7 km, and subsequently
decreasing slightly at window sizes larger than 7 km! 7 km. This window size was therefore
used to spatially average nine satellite-derived environmental variables, which were used as
predictors ofTa in linear regression and random forest models. Cross-validation results show
that the random forest model (MAE = 2.02¡C,R2 = 0.74) outperforms the linear regression
model (MAE = 2.41¡C,R2 = 0.64). The distribution of residuals from the random forest model
suggests that this method slightly overestimatesTa, with a mean residual value of 0.09¡C.
Most of the estimatedTa values were within the accuracy of 1Ð3¡C (33.04% within 1¡C and
77.25% within 3¡C). The satisfactory results suggest that random forest models at proper
spatial size can effectively estimateTa over complex terrain regions. Additionally, variable
importance analysis indicates that LST is the most important variable forTa estimation and
remotely sensed variables contribute more than geographical variables.

Based on the estimatedTa from the random forest model, the spatial variation of
summer daily maximumTa in British Columbia was studied. MaximumTa exhibits a
significant regional variability in the study area, which is highly influenced by altitude,
terrain, distance to ocean, and other environmental variables. Temperature in June is lower
than that in July and August. Most regions show similar temperature in July and August,

Figure 6. Spatial distribution of averaged daily maximumTa for British Columbia in the summer
periods from 2003 to 2012.
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except for the northeastern plains and northern plateau. With the use of satellite remote
sensing, spatially detailed information on air temperature in large and mountainous areas
can be obtained, which is of great significance for understanding wildfire risk, forest
distribution, and growth.
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